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Across kingdoms of life, organisms avoid infectious agents  
  when it is feasible to do so and when the benefits of 

remaining disease-free outweigh the costs of avoidance. These 
behaviors can have major impacts at all levels of ecological 
organization (Buck et al. 2018; Weinstein et al. 2018). Humans 
also avoid infectious agents (Curtis 2014), and as the most 
impactful creature on the planet, our disease avoidance behav-
iors can have correspondingly immense effects on ecosystems. 
Whereas most organisms must choose to either avoid an infec-

tious agent or continue their normal behaviors and risk expo-
sure, human ingenuity allows us to employ a unique third 
strategy – to target the infectious agent, its non-human hosts, 
or its ecosystem for eradication. Now accomplished mainly 
through the development and administration of medication 
(including vaccines), disease control has historically involved a 
substantial amount of habitat modification and destruction, 
pesticide and poison application, and mass culling of affected 
species (WebTable 1). For example, extensive killing of rac-
coons, foxes, bats, and badgers has been largely ineffective at 
controlling rabies and bovine tuberculosis (Donnelly et  al. 
2003; Lederman 2016). Despite its well-documented environ-
mental impacts, the insecticide DDT continues to be used to 
control the mosquitoes that transmit malaria (WHO 2011). 
Following recent Ebola and Marburg virus outbreaks, attempts 
to eliminate reservoir species included cave fumigation, poi-
soned bait distribution, and forest destruction (Amman et al. 
2014; Egbetade et  al. 2015). Even purportedly ecofriendly 
methods can have severe ecological impacts. For instance, 
mosquitofish (Gambusia spp), widely introduced to control 
virus-carrying mosquitoes, are now implicated in population 
declines of fishes, amphibians, and invertebrates globally (Pyke 
2008). As such examples illustrate, human efforts to eradicate 
disease often have major environmental consequences.

However, when humans avoid disease instead of seeking 
to eradicate it, this behavior can provide de facto environ-
mental protection. For this to occur, perceived risk must be 
high enough to alter the way humans interact with species or 
habitats of conservation value, and disease control must be 
economically or socially impracticable. The object of avoid-
ance can range from an individual organism to an ecosystem, 
resulting in protection at different scales. Taboos and cultural 
prohibitions against harvesting specific animals often have 
origins in disease transmission and can confer protection to 
focal species (eg Jones et al. 2008). For instance, during the 
recent Ebola virus outbreak in West Africa, bushmeat con-
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In a nutshell:
•	 Throughout recorded history, humans have avoided species 

and ecosystems associated with infectious disease, some-
times providing unexpected conservation benefits

•	 Disease control efforts can erode such benefits; for instance, 
in sub-Saharan Africa, efforts to control the parasite that 
causes river blindness have disturbed sensitive riparian 
areas

•	 Genome-editing technologies now hold the potential to 
eradicate long-standing scourges of humanity; while these 
innovations are a boon for human health, altered human 
behavior following successful disease control could have 
negative impacts on the natural world

•	 Disease control efforts must take potential environmental 
outcomes into account, including those likely to be caused 
by changes in human behavior

•	 By incorporating disease risk into development plans, 
scientists can better ensure equitable and sustainable 
progress
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sumption decreased across all income levels (Ordaz-Nemeth 
et  al. 2017). After the recent outbreak of SARS-CoV-2 
(“COVID-19”), China banned wildlife trade and consump-
tion in an effort to prevent future pathogen spillover events 
(Science 2020). Although laws targeting the wildlife trade 
have been enacted previously, public buy-in – motivated by 
pathogen avoidance – could make this attempt successful, 
with accompanying conservation benefits to numerous 
threatened species. At larger scales, disease avoidance can 
protect entire habitats. For example, eye gnats (Hippelates 
pusio), which spread conjunctivitis, delayed the development 
of the Coachella Valley in California (Hall 1932). Diseases 
need not infect humans to provide conservation benefits. For 
instance, the widespread distribution of nagana (animal 
trypanosomiasis) across the tsetse belt (associated with tsetse 
flies [Glossina spp]) of sub-Saharan Africa has hindered 
large-scale agricultural and pastoral development and pro-
moted lower intensity nomadism throughout this region 
(Figure 1; Rogers and Randolph 1988). However, while dis-
ease avoidance can protect species and habitats, these protec-
tions are not immutable.

Factors influencing ecological consequences

When risk is associated with a species or habitat, disease 
avoidance by humans appears to have threshold effects 
on conservation that depend on (1) the perceived human 
cost of the disease, and (2) the technical, economic, and 
social feasibility of disease control (Figure  2). The human 
cost, which is a function of disease severity and the num-
ber of people affected, varies widely between infectious 
agents. When human cost is low, due to either low path-
ogenicity (severity; eg trombiculiasis from North American 
chiggers [Trombicula spp]) or low prevalence (eg angi-
ostrongyliasis from rat lungworm [Angiostrongylus can-
tonensis]), inaction, individual medication, and minor 
behavioral modifications usually dominate, resulting in 
minimal conservation impacts. In contrast, when human 
cost is high (eg malaria, COVID-19), attempts to reduce 
exposure lead to either disease avoidance or disease con-
trol, with conservation implications that depend on the 
feasibility of the latter. Whether or not a disease can be 
controlled is a function of technical feasibility (the ability 
to identify and manage the disease source) and the resources 
and community support necessary to implement control 
efforts. When knowledge of the control efforts improves 
or when costs associated with control efforts change, the 
conservation benefits of disease can rapidly disappear or 
even reverse (Figure  3). For example, mosquito-borne 
diseases thwarted early attempts to construct the Panama 
Canal in what was at the time pristine wetland habitat. 
However, in 1897, Ronald Ross discovered that mosquitoes 
are the primary vectors of the protozoan parasites that 

Figure  1. In sub-Saharan Africa, (a) trypanosomes are transmitted by  
(b, inset) tsetse flies (Glossina spp) to humans and livestock, causing 
human sleeping sickness and (c) nagana (animal trypanosomiasis), respec-
tively. Throughout human history, these diseases have prevented develop-
ment in the region, thereby providing conservation benefits. Map in (b): cat-
tle distribution shown in gray stippling, based on Hanotte et al. (2002); 
tsetse fly distribution shown in blue, based on Gifford-Gonzalez (2000). 
Image in (c) used under CC BY 4.0 (creativecommons.org/licenses/by/4.0).

(a)

(b)

(c)

A
R 

W
al

ke
r

W
el

lc
om

e C
ol

le
ct

io
n



© The Ecological Society of America� Front Ecol Environ doi:10.1002/fee.2215

Conservation and infectious disease control REVIEWS    331

cause malaria. With a newly identified control target and 
financial support from the US Government, the Isthmian 
Canal Commission (the US administrative commission 
overseeing construction of the Canal) eliminated standing 
water, fumigated buildings, distributed quinine, and quar-
antined infected individuals (CDC 2017). These efforts 
made possible the completion of the Panama Canal, result-
ing in extensive habitat destruction.

Notably, the conservation benefits of disease can reverse due 
to changes in the feasibility of control, even when such control 
does not directly harm hosts or ecosystems. For example, river 
blindness (onchocerciasis), which is vectored by river-breeding 
black flies (Simulium spp), limited settlement and farming in 
sensitive riparian habitats across much of sub-Saharan Africa 
until the relatively recent discovery and distribution of the 
anthelmintic ivermectin (Amazigo et al. 2006). Through drug 
distribution and carefully monitored larvicide application, river 
blindness was successfully controlled with minimal direct envi-
ronmental consequences. However, in eliminating the disease 
threat, control efforts also eliminated protection of biodiverse 
riparian areas, which are now heavily populated, extensively 
deforested, and intensively farmed (Calamari et al. 1998).

Technological advancements

Understanding the conservation implications of disease 
avoidance is critical because humanity’s technological arsenal 
is rapidly changing in ways that could greatly alter conser-
vation outcomes. Historically, disease control was facilitated 
by advances such as the elucidation of life cycles and the 
development of pesticides. More recently, Wolbachia-infected 
mosquitoes, which are less likely to transmit mosquito-borne 
diseases than their uninfected counterparts, have been inten-
tionally released in several countries, with promising results 
(Servick 2019). Now, a new wave of interventions is on the 
horizon, with genome-editing tools providing the potential 
to eradicate once-common infectious agents, hosts, and vec-
tors (Eckhoff et  al. 2017; Lovett et  al. 2019). For example, 
researchers have used the CRISPR–Cas9 genome-editing 
technique to “drive” genes for sterility and malaria resistance 
into laboratory populations of mosquitoes. Because these 
genes are reliably passed to progeny, such modifications 
could rapidly limit mosquito populations in the wild, pos-
sibly to the extent that malaria transmission will no longer 
occur (Gantz et  al. 2015; Hammond et  al. 2016). Other 
genetic engineering projects have proposed to make white-
footed mice (Peromyscus leucopus) resistant to Lyme disease 
(Buchthal et  al. 2019), to increase drug susceptibility in 
Cryptosporidium (Vinayak et  al. 2015), and to target other 
infectious agents of importance to human health, such as 
Leishmania, Trypanosoma cruzi, and Toxoplasma gondii 
(Bryant et  al. 2019). As such, scientists may soon possess 
the tools necessary to eliminate diseases that have plagued 
humans throughout our evolutionary history.

Although these technological innovations promise to be 
more like a delicate scalpel than the heavy-handed cudgel of 
DDT and wetland destruction of the past, they will nonethe-
less have major environmental impacts. Previous authors 
have examined the consequences of escape (ie the accidental 
release of genetically modified organisms; Webber et  al. 
2015; Courtier-Orgogozo et al. 2017) and potential impacts 
mediated by changes to food webs (eg Webber et  al. 2015; 
Snow 2019), but here we consider consequences mediated by 
changes in human behavior. For example, eliminating the 
threat of malaria could hasten development in the Amazon 
Basin (MacDonald and Mordecai 2019), as have disease con-
trol efforts in the past (Griffing et al. 2015). Similarly, elimi-
nating Lyme disease in the eastern US could incentivize 
development by increasing property values (Larsen et  al. 
2014). Yet despite the vast potential for ecological repercus-
sions, these considerations have been largely ignored in dis-
cussions of the promises and perils of these new approaches. 
Before such interventions are attempted, biotechnologists 
should consult with local stakeholders and ecologists to 
carefully examine potential environmental impacts, includ-
ing those likely to be caused by the resulting changes in 
human behavior and development.

Figure 2. When the cost of a disease is high (due to high pathogenicity 
and/or prevalence), humans take action to avoid that disease. For depicted 
diseases, increasingly dark shading in boxes along the y axis corresponds 
to increasing pathology and prevalence, and increasingly dark shading in 
boxes along the x axis represents increasing levels of technology and 
resources needed for control. Whether that action results in conservation 
(blue) or destruction (red) of species or habitats depends on the feasibility 
of control (availability of technology and resources). With new technologi-
cal innovations, diseases that once conferred de facto conservation pro-
tection may now instead drive destruction of species or habitats.
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Equity considerations

Conversations about trade-offs between health and conservation 
must also consider equity. Throughout human history, disease 
avoidance has often been a privilege reserved for the wealthy. 
For example, during the 1800s, cholera outbreaks dispropor-
tionately affected poor people who were unable to avoid con-
taminated water (Evans 1988). Efforts to stem the trade and 
consumption of wildlife often disproportionately affect the 
poor who depend on bushmeat for protein or who harvest 
wildlife and lack other sources of income (Brashares et  al. 
2011). At a global scale, the burden of infectious diseases is 
currently unevenly distributed, with people living in low-income 
countries in the tropics and sub-tropics particularly vulnerable 
(Bonds et  al. 2012; Wood et  al. 2017). Indeed, poverty and 
infectious disease can even reinforce one another, a relationship 
termed the “poverty trap” (Bonds et  al. 2010). Current dif-
ferences in infectious disease burdens reflect a long history 
of disparities on a global scale. Technological advancements 
to control disease have not been uniformly or equitably dis-
tributed, and conservation efforts in developing countries have 
often amounted to colonialism, perhaps even contributing to 
negative health outcomes for Indigenous peoples (Adams et al. 
2004; Fairhead et al. 2012). Efforts to target diseases in under-
resourced locations therefore hold the greatest potential to 
improve livelihoods and reduce economic inequality. These 
projects must continue to move forward because health justice 
in the developing world is non-negotiable. Nevertheless, due 
to substantial overlap between biodiversity, disease burden, 
and poverty (Figure  4), these advancements could simultane-
ously increase pressure to develop areas of conservation value. 

Early recognition of the potential impacts of these projects 
could allow scientists and policy makers to plan for and mit-
igate any negative impacts before they occur. Instead of affirming 
narratives that frame poverty and human suffering as an 
acceptable price for leaving nature intact, ecologists should 
incorporate disease risk into development plans to limit the 
creation of new poverty traps, while also buffering against 
loss of conservation protection. Partnerships between local 
communities, governments, scientists, conservation organiza-
tions, and health organizations that also consider the conse-
quences of changes in human behavior will be critical for 
reducing disease burdens while at the same time ensuring 
equitable and sustainable development. In Borneo, for instance, 
the non-profit Health in Harmony provides high-quality, 
affordable healthcare to residents of 23 villages around Gunung 
Palung National Park, thereby reducing incentives for villagers 
to engage in illegal logging (Webb et  al. 2018). This project 
demonstrates how human health initiatives can be tied to 
conservation goals to provide win–win solutions for people 
and nature.

Conclusions

Through technological advancements, disease, once consid-
ered by colonial powers as “a striking angel with a flaming 
sword of deadly fevers, who prevents us from penetrating 
into the interior to the springs of this garden” (de Barros 
1552), is steadily losing its protective power. While we 
applaud new innovations to protect human health, it must 
also be acknowledged that these changes will have major 
ramifications for conservation, as they have throughout 

Figure 3. Disease avoidance can drive either conservation or large-scale biodiversity loss. For example, wetlands were long considered “uninhabitable” 
based on high disease risk and were therefore largely spared from development pressure. However, as mosquito control became technologically feasible 
(eg via wetland modification and DDT application), severe ecological consequences ensued, with destruction ceasing only when the conservation costs of 
these management strategies became widely recognized and environmental protection was codified into law.
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human history. To better ensure that these 
long-awaited gains for human health do not 
result in substantial losses for the natural world 
(and ultimately for humans, whose continued 
existence depends on critical ecosystem ser-
vices), ecologists need to recognize the pre-
viously underappreciated conservation impacts 
of disease eradication and proactively manage 
for a world where de facto conservation ben-
efits are no longer provided by infectious 
disease.
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